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Scheme 1.
1,3-Dialkylimidazolium-2-carboxylate compounds of formulas 1a, 2, and 4 have been synthesized and
fully characterized by X-ray spectroscopy quite recently. Up today, these compounds have found some
interesting applications as precursors of N-heterocyclic carbenes (NHCs) used as ligands for metal-com-
plexes or in the synthesis of organic compounds and ionic liquids. We have recently reported the use of 1-
butyl, 3-methylimidazolium-2-carboxylate and 1,3-dimethylimidazolium-2-carboxylate in a CO2-trans-
fer reaction to CH3OH and acetophenone for the synthesis of methylcarbonate and benzoylacetate. The
scope of this CO2-transfer reaction has been expanded to several organic compounds with active hydro-
gen (acetone, cyclohexanone, and benzylcyanide) for the synthesis of carboxylates of pharmaceutical
interest, and to propargyl alcohols for the synthesis of a-alkylidene cyclic carbonates.

� 2008 Published by Elsevier Ltd.
1. Introduction

1,3-Dialkylimidazolium-2-carboxylate compounds of formulas
1a,1 2,2 and 43 have been synthesized and fully characterized by
X-ray spectroscopy quite recently (Scheme 1). Analogous com-
pounds of formulas 1b,4 3,5 and 5,5 as well as the 1,3-bis(2,4,6-tri-
methylphenyl)imidazolinium-2-carboxylate (6) and 1,3-bis(2,6-
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masi).
diisopropylphenyl)imidazolinium-2-carboxylate (7)5 have also
been extensively characterized.

As N-alkyl and N-aryl substituted imidazol(in)ium-2-carboxyl-
ates are adducts of the corresponding carbene with CO2, they have
been employed in synthetic chemistry both as organocatalysts in
CO2-coupling reactions with epoxides6 and as NHC-transfer agents.
Studies about the thermal stability of several NHC–CO2 adducts
carried out by Louie,3 and more recently by Lu and co-workers6

have contributed significantly to the understanding of their reac-
tivity. Notable examples of utilization of compound 1a in chemical
synthesis are the preparation of NHC-metal complexes,7,8 amidates
and thioamidates,9 phosphenium adducts,10 and ionic liquids.11

Several NHC-metal complexes prepared using compounds 3–7
have also been used as catalysts in olefin metathesis,5 cyclopro-
panation reactions,5 and Suzuki–Miyaura couplings.12

The employment of imidazol(in)ium-2-carboxylates in synthe-
sis and catalysis seems interesting5–12 as the generation of NHC
from the corresponding carboxylate 1–7, when applicable, shows
the advantage to start from air- and moisture-stable species.5–8,12

Due to the high moisture and air sensitivity of imidazol-2-yli-
denes, developing new methods for in situ generation of NHC is
of crucial importance. In this context, the literature documents
the development of wide applicable procedures that allow the fac-
ile use of NHCs in a variety of reactions.13–16

We have recently synthesized and fully characterized com-
pounds 1a and 1b from 1-alkyl imidazoles and DMC.1 We have also
recently reported that compounds 1a and 1b can be prepared from
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1,3-dialkylimidazolium salts, Na2CO3, and CO2, through a Kolbe–
Smith type reaction,4

ð1Þ

and that they behave as active CO2-carriers, transferring CO2 to
methanol and acetophenone for the synthesis of methylcarbonate
and benzoylacetate salts in high yields (Eq. 2).17

ð2Þ

Once having established that compounds 1a and 1b act as CO2-

transfer agent toward methanol and acetophenone (Eq. 2), we
investigated several active hydrogen organic substrates of interest
as their corresponding carboxylates are widely used as intermedi-
ates in chemical industry, and several propargyl alcohols which are
known to react with CO2 undergoing a carboxylative cyclization
reaction to afford a-alkylidene cyclic carbonates.

2. Carboxylation of ketones and benzylcyanide

Compounds like acetone, cyclohexanone, and benzylcyanide
(pKa � 20–22)18 can be carboxylated according to the synthetic
procedure shown in Eq. 2, under very mild conditions and in good
yields affording the corresponding carboxylate salts (Scheme 2).
The carboxylates shown in Scheme 2, both in the form of their salts
(–COOM), acids (–COOH), or esters (–COOR), are widely used as
intermediates for pharmaceuticals and agrochemicals.19 The classi-
cal synthesis of compounds shown in Scheme 2 is carried out by
reaction of the organic substrate with strong and expensive bases
like NaNH2, hydrides, naphthalenes, and n-butyl lithium.20

The strong base is required in order to generate the carbon anion
that is able to react with carbon dioxide. Various alternative synthetic
procedures were described in the scientific literature based on the use
of various catalysts.21 All these alternative synthetic procedures are
affected by unsatisfactory yields, or require high catalyst loading.

The carboxylation of acetone has been carried out according to
Eq. 2 by using the ketone as the co-solvent and reagent. After 70 h
of reaction at room temperature, the sodium salt of 3-oxo-butanoic
acid (8) was isolated in 77% yield.22 The reaction is highly selective
as the formation of the salt of 3-oxoglutaric acid as result of a dou-
ble acetone carboxylation described by other Authors21l was not
observed.

The trans-carboxylation reaction of cyclohexanone affording
selectively 2-oxo-cyclohexan-1-carboxylate product (9) (yield
Scheme 2.
62%)23 and the benzylcyanide carboxylation24 affording product 10
(60% yield) were carried out by using a 1:1 ratio of reactants in
CH3CN as the solvent.

While the elucidation of the mechanism of the trans-carboxyl-
ation reaction deserves further investigations, some preliminary
studies seem to indicate that preliminary generation of the free
carbene may occur.17 The carbene (pKa of 22–24 has been re-
ported)25 could react with the organic substrate generating an an-
ion able to react with CO2 (Scheme 3).

As far as the role of the metal cation is concerned (Na+ or K+), it
could be involved both in the substrate activation and/or in the
product stabilization.26

3. Synthesis of a-alkylidene cyclic carbonates

As reported in Eq. 2, compounds 1a and 1b have been used in
the carbonation of CH3OH for the synthesis of CH3OC(O)O�M+

(M+ = Na+, K+) and ionic liquids.17 As an extension of the study on
the reactivity toward alcohols, we investigated the reaction of
1,3-dimethylimidazolium-2-carboxylate and 1-butyl, 3-methyl-
imidazolium-2-carboxylate with propargyl alcohols of formulas
11a–d as it is known that these alcohols can react with CO2 under-
going a carboxylative cyclization reaction to give the correspond-
ing cyclic carbonates 12a–d (Eq. 3).27 a-Alkylidene cyclic
carbonates 12a–d are useful intermediates to oxazolidinones,
b-oxopropyl carbonates, carbamates, and furanone derivatives.28
ð3Þ



Table 1
Synthesis of a-alkylidene cyclic carbonates 12a–d from propargyl alcohols 11a–d and CO2

a

Entry Alcohol Substituents Catalyst Carbonate Yieldb (%)

1 11a R1 = R2 = CH3 1,3-Dimethylimidazolium-2-carboxylate 12a 77
2 11b R1 = CH3, R2 = C2H5 1,3-Dimethylimidazolium-2-carboxylate 12b 75
3 11c R1–R2 = –(CH2)5– 1-Butyl, 3-methylimidazolium-2-carboxylate 12c 51
4 11d R1 = CH3, R2 = C6H5 1-Butyl, 3-methylimidazolium-2-carboxylate 12d 73 (67)c

a Reaction conditions: 10.3 mmol of alcohol; 0.79 mmol of catalyst (catalyst loading 7.7%); 60 bar CO2; 100 �C; 15 h.
b Gas-chromatographic yield.
c Isolated yield.
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The reaction depicted in Eq. 3 requires a catalyst. Several tran-
sition metals have been successfully employed including Pd,29

Ru,30 Co,31 Cu,32,33 and Ag,34 but the reaction is also promoted by
tertiary phosphines.35,36

An overview of data reported in the literature about this reac-
tion allows to conclude that (i) tertiary propargyl alcohols are more
reactive substrates;37 (ii) higher yields are usually obtained when
R1–R2 (Eq. 3) are represented by linear alkyl groups (alcohols
11a–b, 65–99% yield), while substrates with R1–R2 represented
by bulky (alcohol 11c, 58–75% yield) or phenyl groups (alcohol
11d, 32–50% yield) gave lower yields.29–36

Very recently a Japanese Patent38 reported the use of imidazol-
and imidazolin-2-ylidenes with bulky N-alkyl and N-aryl substitu-
ents and their CO2-adducts as catalysts in the synthesis of
carbonate 12a (obtained in 88% yield). These data confirm that
NHCs compete with phosphines for donating properties39 and cat-
alytic activity, and open the question about the role of the NHC in
the carboxylative cyclization reaction.

As the steric bulk of NHC N-substituents has been often re-
ported to influence significantly their reactivity,13,15 we decided
to investigate the activity of compounds 1a and 1b as catalysts of
the carboxylative cyclization of terminal propargyl alcohols. Re-
sults of our study are summarized in Table 1. Interestingly, with re-
spect to yields obtained by using different catalysts,40 a higher
yield was obtained by using the less reactive 2-phenyl, 3-butyn-
2-ol (entry 4, 67% isolated yield). In all experiments, catalyst load-
ing was 7.7%, and selectivity in carbonates 12a–d was >99%.
4. Conclusion

4.1. Synthesis of carboxylates

Coupling the synthesis of compound 1b with CO2 (Eq. 1) and
the trans-carboxylation reaction of CO2 from compound 1b to or-
ganic substrates (Eq. 2) allow to describe a new advanced synthetic
methodology for the preparation of organic carboxylates using
CO2.
Scheme 4.
Considering the carboxylation reaction reported in Eq. 1, it is
worth to note that Na2CO3

41 is stoichiometrically consumed while
we have shown that the imidazolium moiety can be recycled sev-
eral times without significant decomposition (Scheme 4).4

We consider, thus, the imidazolium cation acting as a recyclable
specie for the synthesis of carboxylates using CO2.

4.2. Synthesis of a-alkylidene cyclic carbonates

By comparison with data reported in the Japanese Patent, 1,
3-dimethylimidazolium-2-carboxykate and 1-butyl, 3-methylimi-
dazolium-2-carboxylate show a good activity. Moreover, catalyst
1b shows a better specificity for the less reactive 2-pheny-l,3-bu-
tyn-2-ol (11d) substrate.
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